No mapping with \mathbf{n} fixed \mathbf{n}-points.

Problem with a solution proposed by Arkady Alt, San Jose, California, USA
Let $n \geq 2$ be positive integer and let $g: D \rightarrow D$ be mapping, such that n times iterated mapping g_{n} have exactly n fixed points. Prove that there is no mapping $f: D \rightarrow D$ such that $f_{n}=g$. (For any $h: D \rightarrow D$ and $h_{0}:=I d_{D}$ and $h_{n}=h \circ h_{n-1}, n \in \mathbb{N}$).
Solution.

Definition.

We say that $x \in D$ is fixed point of order n of mapping $h: D \rightarrow D$ if $h_{n}(x)=x$ and $h_{k}(x) \neq x, k=1, \ldots, n-1$ (or shortly x is fixed n-point of h).
Fixed point x of h we also will call fixed point of order one,or fixed 1-point,
For order of fixed point x of h we also will use notation $\operatorname{ord}_{h}(x)$.
Thus x is fixed n-point, or $\operatorname{ord}_{h}(x)=n$ iff x is fixed point of h_{n} and not fixed point of h_{k} for all $k<n$. Obvious that if x is fixed m-point of h then x is also is fixed point of h_{n} for any n divisible by m.
For any function h defined on D we denote via $\mathcal{F}_{n}(h)$ the set of all fixed n-points of h on D.
Accordingly to condition of problem consider now mapping $g: D \rightarrow D$ which have exactly
n fixed n-points, that is $\mathcal{F}_{n}:=\mathcal{F}_{n}(g)$ contain exactly n elements.
Since for any $x \in \mathcal{F}_{n}$ we have $g_{n}(g(x))=g\left(g_{n}(x)\right)=g(x)$ and $g_{k}(g(x)) \neq g(x), k<n$ (because otherwise, if for some $1 \leq k<n$ holds $g_{k}(g(x))=g(x) \Leftrightarrow g_{k+1}(x)=g(x)$ then $g_{n-k-1}\left(g_{k+1}(x)\right)=g_{n-k-1}(g(x)) \Leftrightarrow x=g_{n-k}(x)$, that is the contradiction).
Hence, $g(x) \in \mathcal{F}_{n}$ for any $x \in \mathcal{F}_{n}$ and, therefore, $g\left(\mathcal{F}_{n}\right) \subset \mathcal{F}_{n}$.
Moreover, we will prove that restriction g on \mathcal{F}_{n} is injection and, moreover, bijection since $g\left(\mathcal{F}_{n}\right) \subset \mathcal{F}_{n}$. Indeed, if $x_{1}, x_{2} \in \mathcal{F}_{n}$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$ then
$g_{n-1}\left(g\left(x_{1}\right)\right)=g_{n-1}\left(g\left(x_{2}\right)\right) \Leftrightarrow$
$g_{n}\left(x_{1}\right)=g_{n}\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$.
Note that for any $x \in \mathcal{F}_{n}$ and any k, l such that $1 \leq k<l \leq n-1$ holds $g_{k}(x) \neq g_{l}(x)$.
Indeed, if $g_{k}(x)=g_{l}(x)$ then $g_{n-l}\left(g_{k}(x)\right)=g_{n-l}\left(g_{l}(x)\right) \Leftrightarrow g_{n-l+k}(x)=g_{n}(x) \Leftrightarrow$
$g_{n-l+k}(x)=x$ and it is contradiction, because $1 \leq n-l+k<n$.
Since $0 \leq k \leq n-1$ and $\left\{x, g_{1}(x), \ldots, g_{n-1}(x)\right\} \subset \mathcal{F}_{n}$ then $\mathcal{F}_{n}=\left\{x, g_{1}(x), \ldots, g_{n-1}(x)\right\}$ for any $x \in \mathcal{F}_{n}$.
Suppose that there is mapping $f: D \rightarrow D$ such that $f_{n}=g$. Then $f \circ g=f \circ f_{n}=$ $f_{n} \circ f=g \circ f$. Also note that for any $x \in \mathcal{F}_{n}$ holds $f(x) \in \mathcal{F}_{n}$. Indeed, since $x \in \mathcal{F}_{n}$ then $g_{n}(f(x))=f\left(g_{n}(x)\right)=f(x)$. Moreover, for any $x \in \mathcal{F}_{n}$ and any $k<n$ holds $g_{k}(f(x)) \neq f(x)$ because, otherwise, if there are $x \in \mathcal{F}_{n}$ and $k<n$ such that
$g_{k}(f(x))=f(x)$ then $f\left(g_{k}(x)\right)=f(x) \Leftrightarrow f_{n-1}\left(f\left(g_{k}(x)\right)\right)=f_{n-1}(f(x)) \Leftrightarrow$
$f_{n}\left(g_{k}(x)\right)=f_{n}(x) \Leftrightarrow g\left(g_{k}(x)\right)=g(x)$. Since $g_{k}(x), x \in \mathcal{F}_{n}$ and g is injection on \mathcal{F}_{n} we obtain $g_{k}(x)=x$, that is the contradiction. Hence, $f(x)$ is fixing n-point of g, for any $x \in \mathcal{F}_{n}$ and, therefore, $f\left(\mathcal{F}_{n}\right) \subset \mathcal{F}_{n}$.
So now we can consider f and g only on \mathcal{F}_{n}. Let $a \in \mathcal{F}_{n}$ then $\mathcal{F}_{n}=\left\{a, g_{1}(a), \ldots, g_{n-1}(a)\right\}$
Note that $f(a) \neq a$ (supposition $f(a)=a$ yield $f_{n}(a)=a \Leftrightarrow g(a)=a$, that
is the contradiction). Then $f(a)=g_{k}(a)$ for some $k=1,2, \ldots, n-1$. Noting that $f_{2}(a)=f\left(g_{k}(a)\right)=g_{k}(f(a))=g_{k}\left(g_{k}(a)\right)=g_{2 k}(a)$ we will prove by Math. Induction that $f_{m}(a)=g_{m k}(a)$ for any positive integer m. In supposition $f_{m}(a)=g_{m k}(a)$ we obtain $f\left(f_{m}(a)\right)=f\left(g_{m k}(a)\right) \Leftrightarrow$ $f_{m+1}(a)=g_{m k}(f(a)) \Leftrightarrow f_{m+1}(a)=g_{m k}\left(g_{k}(a)\right) \Leftrightarrow f_{m+1}(a)=g_{(m+1) k}(a)$. In particular, since $g_{n}(a)=a$ we get $f_{n}(a)=g_{n k}(a) \Leftrightarrow g(a)=a$, that is contradiction.

